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Abstract. We provide standard model expectations for the rare radiative decays B → K∗γ, B → ργ and
B → ωγ, and the electroweak penguin decays B → K∗�+�− and B → ρ �+�− at the next-to-leading
order (NLO), extending our previous results to b → d transitions. We consider branching fractions, isospin
asymmetries and direct CP asymmetries. For the electroweak penguin decays, the lepton-invariant mass
spectrum and forward–backward asymmetry is also included. Radiative and electroweak penguin transitions
in b → d are mainly interesting in the search for new flavor-changing neutral current interactions, but in
addition the B → ργ decays provide constraints on the CKM parameters (ρ̄, η̄). The potential impact of
these constraints is discussed.

1 Introduction

The radiative and electroweak penguin transitions b →
Dγ and b → D�+�− (D = d, s) provide valuable in-
sight into the nature of flavor-changing neutral currents.
Induced through quantum fluctuations in the standard
model, they may be strongly influenced by new heavy
particles. This has been studied extensively for inclusive
b → sγ decays over the past decade. Some years ago the
QCD factorization approach to exclusive B decays [1,2]
was extended to exclusive radiative [3–5] and electroweak
penguin decays [3], thus opening the possibility to per-
form detailed studies of isospin breaking and CP asym-
metries in these decays, as well as to obtain more precise
predictions for branching fractions and forward–backward
asymmetries.

At the time when these papers were written, only the
exclusive B → K∗γ decays had been observed, and a next-
to-leading order (NLO) analysis could be done only for
B → K∗γ, ργ and B → K∗�+�−, the case of B → ρ �+�−
being excluded by the absence of the NLO (two-loop) vir-
tual correction to the b → d�+�− transition. This missing
piece of input has recently been computed [6,7], while the
formal justification of the QCD factorization method in ra-
diative decays has been pursued in [8,9]. Moreover, the B
factories have now put limits on the B → ργ and B → ωγ
branching fractions [10,11], and have performed first mea-
surements of B → K∗�+�− [12,13] including the lepton-
invariant mass spectrum and forward–backward asymme-
try [14]. These theoretical and experimental advances mo-
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tivate the following study of the observables of interest
with a complete next-to-leading order calculation (except
for weak annihilation).

This paper is organized as follows: In Sect. 2 we give a
brief introduction to the theoretical formalism. We spec-
ify the input parameters to the analysis and give the var-
ious contributions to the decay amplitudes in numerical
form. The theoretical expectations for the relevant observ-
ables are summarized in Sect. 3. For both, B → V γ and
B → V �+�− decays (V = K∗, ρ, ω), we discuss branch-
ing fractions (lepton-invariant mass spectrum and par-
tially integrated branching fractions for B → V �+�−),
isospin asymmetries (difference between charged and neu-
tral B meson decay) and direct CP asymmetries. For
B → V �+�− the forward–backward asymmetry is also in-
cluded. In Sect. 3.5 we collect the constraints on the CKM
unitarity triangle that can be obtained from the branching
fractions, isospin and CP asymmetries in B → ργ decays.
The analysis of the radiative decays overlaps with recent
work of Ali et al. [15] and Bosch and Buchalla [16], and
we compare our results to theirs in the appropriate places.
We conclude in Sect. 4. The technical Appendix A contains
the new decay amplitudes for B → ρ �+�− related to the
up-quark sector of the effective weak Hamiltonian.

2 Theoretical input

2.1 Formalism

The formalism is described in some detail for b → s transi-
tions in [3], and the extension to b → d is straightforward.
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In the standard model the effective Hamiltonian for b → d
transitions can be written as

Heff = −GF√
2

(
λ

(d)
t H

(t)
eff + λ(d)

u H
(u)
eff

)
+ h.c., (1)

with λ
(d)
q = V ∗

qdVqb, and

H
(t)
eff = C1 Oc

1 + C2 Oc
2 +

10∑
i=3

Ci Oi,

H
(u)
eff = C1 (Oc

1 − Ou
1 ) + C2 (Oc

2 − Ou
2 ). (2)

For b → s transitions λ
(d)
t,u is replaced by λ

(s)
t,u, so that the

term λ
(s)
u H

(u)
eff is CKM-suppressed and can be neglected

in practice. The main technical point of the present pa-
per is to add the decay amplitudes from H

(u)
eff , which are

relevant to the b → d case. We have written the effec-
tive Hamiltonian in a form such that H

(u)
eff involves the

differences of “tree” operators (c̄b)(D̄c) and (ūb)(D̄u) for
b → D (D = d, s) transitions. We use the operator basis
as given in [3]. The numerical values for the Wilson coef-
ficients at µ = mb at leading-logarithmic (LL) and NLL
order are collected in Table 1. The next-to-next-to-leading
logarithmic (NNLL) results for C9,10 were obtained from
the solution to the renormalization group equations given
in [3], including the recent computations of the three-loop
mixing of the four-quark operators into C9 [17] and among
themselves [18]. The coefficient C9 is now complete at
NNLL as formally required by our analysis.

In the QCD factorization formalism the hadronic ma-
trix elements are computed in terms of B meson form
factors and hadron light-cone distribution amplitudes at
leading power in a 1/mb expansion. Since the semi-
leptonic operators O9,10 are bilinear in the quark fields,
their matrix elements can be expressed directly through
B → V form factors. The other operators contribute to
the decay amplitude only through the coupling to a vir-
tual photon, which then decays into the lepton pair. We
therefore introduce

〈γ∗(q, µ)V (p′, ε∗)|H(i)
eff |B̄(p)〉

=
igemmb

4π2

{
2 T (i)

⊥ (q2) εµνρσε∗
ν pρp

′
σ

− 2i T (i)
⊥ (q2) [EMB ε∗µ − (ε∗ · q) p′ µ]

− i T (i)
‖ (q2) (ε∗ · q)

[
qµ − q2

M2
B

(pµ + p′ µ)
]}

, (3)

where |V 〉 denotes |ρ−〉 (|K∗−〉) for B− meson decay, and
−

√
2|ρ0〉 or

√
2|ω0〉 (|K̄∗0〉) for B̄0 decay. In the heavy

quark limit this matrix element depends on only two in-
dependent functions T (i)

a corresponding to a transversely
(a =⊥) and longitudinally (a =‖) polarized V . Most of the
functions T (t)

a can be directly inferred from the calculation
for the case B → K∗�+�− [3] with obvious replacements
for K∗ → ρ(ω). In Appendix A we give the new functions
T (u)

a and point out the differences in T (t)
a for the ρ (ω) me-

son compared to K∗. The decay amplitudes can be further
expressed as

T (i)
a = ξa C(i)

a

+
π2

Nc

fBfa

MB
Ξa

∑
±

∫
dω

ω
ΦB, ±(ω)

×
∫ 1

0
du φa(u) T

(i)
a, ±(u, ω). (4)

The second term incorporates hard scattering of the spec-
tator quark. fB and ΦB,± refer to the B meson decay con-
stant and light-cone distribution amplitudes, f‖ ≡ f , f⊥
and φa to the corresponding quantities for light mesons.
Furthermore Ξ⊥ = 1, Ξ‖ = mV /E. The first “form factor”
term is expressed in terms of the transverse and longitu-
dinal “soft” form factors ξ⊥ and ξ‖, and Ca, Ta,± denote
perturbative hard scattering kernels. The significance of
these terms will be discussed subsequently, but we mention
here that in this work we use a definition of ξ‖ that differs
slightly from [3,19] as explained below. In the description
of B → V γ, there is no advantage in using the “soft” form
factors. In this case we write T (i)

⊥ = T1(0) C
(i)′
⊥ + . . . The

coefficients C
(i)′
⊥ and T

(i)′
⊥,+ are related to the unprimed

coefficients by (8) given below.

2.2 Input parameters

A detailed discussion of the input parameters can be found
in [3]. A summary is given in Table 2, where we have taken

Table 1. Wilson coefficients at the scale µ = 4.6 GeV in leading-
logarithmic (LL) and next-to-leading logarithmic order (NLL). In-
put parameters are Λ

(5)
MS

= 0.220 GeV, m̂t(m̂t) = 170 GeV, MW =
80.4 GeV and sin2θW = 0.23. Three-loop running is used for αs

C1 C2 C3 C4 C5 C6

LL −0.5135 1.0260 −0.0051 −0.0693 0.0005 0.0010
NLL −0.3026 1.0081 −0.0048 −0.0836 0.0003 0.0009

Ceff
7 Ceff

8 C9 C10 CNNLL
9 CNNLL

10

LL −0.3150 −0.1495 2.0072 0
NLL −0.3094 −0.1695 4.1802 −4.3810

4.2978 −4.4300
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Table 2. Summary of input parameters and estimated uncertainties

MW 80.4 GeV λB,+(1.5GeV) 0.485 ± 0.115 GeV
m̂t(m̂t) 170 ± 5 GeV τB0 , τB± 1.54 ps, 1.67 ps
αem 1/137 λ 0.2265+0.0025

−0.0023

Λ
(nf =5)
QCD 220 ± 40 MeV A 0.801+0.029

−0.020

mb,PS(2 GeV) 4.6 ± 0.1 GeV ρ̄ 0.189+0.088
−0.070

mc 1.5 ± 0.2 GeV η̄ 0.358+0.046
−0.042

fB 200 ± 30 MeV

fK∗,⊥ 175 ± 25 MeV fρ(ω),⊥ 150 ± 25 MeV
fK∗,‖ 218 ± 4 MeV fρ,‖, fω,‖ 209 ± 1 MeV, 187 ± 3 MeV
a1(K̄∗)⊥, ‖ 0.2 ± 0.2 a1(ρ, ω)⊥, ‖ 0
a2(K̄∗)⊥, ‖ 0.1 ± 0.3 a2(ρ)⊥, ‖, a2(ω)⊥, ‖ 0.1 ± 0.3, 0.0 ± 0.3

MB ξK∗,‖(0)/(2mK∗) 0.47 ± 0.09 MB ξρ,‖(0)/(2mρ) 0.37 ± 0.06
ξK∗,⊥(0)¶ 0.36 ± 0.07 ξρ,⊥(0) 0.27 ± 0.05

¶ In Sect. 3.1 we determine ξK∗,⊥(0) = 0.26 from experimental data. This value rather
than the one in the table is then used in the subsequent analysis.

Table 3. Form factor parameters from QCD sum rules [26]. The value V (0) is calculated
from T1(0) via (8) and (5)

meson V (0) aV bV A1(0) a1 b1 A2(0) a2 b2 T1(0)
ρ 0.313 1.37 0.315 0.261 0.29 −0.415 0.223 0.93 −0.092 0.285
K∗ 0.424 1.55 0.575 0.337 0.60 −0.023 0.283 1.18 0.281 0.379

the CKM parameters from [20]. Unless stated otherwise,
mb denotes the potential-subtracted (PS) heavy quark
mass [21] (see also the appendix). For the top quark mass
we use the MS definition.

The numerical value of λB,+, related to the first in-
verse moment of the B meson light-cone distribution, is
taken from the QCD sum rule calculation [22]. The de-
cay constants and Gegenbauer moments of the light me-
son distribution amplitudes follow the values given in
Table 1 of [23]. We assume large uncertainties for these
parameters, which cover in particular the recent evalua-
tions of the first Gegenbauer moment of the kaon [24,25]1
(renormalization-scale dependent quantities are evaluated
at scale 2 GeV).

We find it convenient to slightly change the convention
for the longitudinal “soft” form factor compared to [3,19].
Denoting by a tilde the form factors in the old convention,
the “soft” form factors are defined by the relations

ξ⊥(q2) = ξ̃⊥(q2) =
MB

MB + mV
V (q2),

ξ‖(q2) = ∆‖(q2) ξ̃‖(q2)

=
MB + mV

2E
A1(q2) − MB − mV

MB
A2(q2), (5)

1 In our convention the momentum fraction used in the light-
cone distribution amplitudes refers to the outgoing quark.
Hence our a1(K∗) is opposite in sign compared to these pa-
pers.

where ∆‖(q2), given by (66) of [3], determines the per-
turbative correction to the form factor relations between
A0, A1 and A2. Since ∆‖(0) = 1 and ∆‖(q2) = 1 at tree
level, the only difference is a change in the q2-dependence
of ξ‖(q2) versus ξ̃‖(q2).

The q2-dependence of the QCD form factors V , A1 and
A2 has been parameterized in the form [26]

F (q2) =
F (0)

(1 − aF q2/M2
B + bF q4/M4

B)
. (6)

We use the definitions (5) and this equation with parame-
ters given in Table 3 to determine the q2-dependence of ξ⊥
and ξ‖. The normalization of the longitudinal form factor
at q2 = 0 is

ξ‖(0) =
2mV

MB
A0(0)

=
MB + mV

MB
A1(0) − MB − mV

MB
A2(0), (7)

but we do not use V (0) to obtain ξ⊥(0). We use instead
the relation between V (0) and T1(0) (at scale µ = mb) [19]
to write

T1(0) = ξ⊥(0)
(

1 − αsCF

4π

)

+
αs(µf )CF

4π
4π2fBf⊥
NcMB

λ−1
B,+ 〈ū−1〉⊥, (8)
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with µf ≈ 1.5 GeV, and obtain ξ⊥(0) from the value of
T1(0) given in [26]. This ensures that, since the radiative
decays B → V γ involve only the tensor form factor T1
or, alternatively, ξ⊥, we obtain identical results for these
decays independent of whether we express the decay am-
plitude in terms of the QCD form factor T1 or the “soft”
form factor.

Except for the longitudinal decay constant and second
Gegenbauer moment, the hadronic parameters of the ω
meson are assumed to be identical to those of the ρ meson
for lack of more information. As a consequence we do not
have meaningful estimates of the difference between the
ρ0 and ω decay rates.

2.3 Decay rates and distributions

The decay amplitudes for B → V γ and B → V �+�− can
be written in terms of [3]

C(i)
7 ≡ T (i)

⊥ (0)
T1(0)

= δit Ceff
7 + . . . ,

C(i)
9, ⊥(q2) ≡ δit C9 +

2mbMB

q2

T (i)
⊥ (q2)
ξ⊥(q2)

,

C(i)
9, ‖(q

2) ≡ δit C9 − 2mb

MB

T (i)
‖ (q2)

ξ‖(q2)
, (9)

where i = t, u refers to the two different CKM factors.2
With these definitions, we obtain the decay rate for

B̄ → ρ(ω)γ in the form

Γ (B̄ → ρ(ω)γ)

=
G2

F

8π3 M3
B S

(
1 − m2

V

M2
B

)3
αem

4π
m2

b T1(0)2

×
{

|λ(d)
t C(t)

7 |2 + |λ(d)
u C(u)

7 |2

− 2|λ(d)
u λ

(d)
t |Re

(
eiαC(u)

7 C(t)∗
7

)}
, (10)

with S = 1 for ρ−, and S = 1/2 for ρ0 and ω. mV de-
notes the mass of the light meson, which we include in
the phase space factor, while in general m2

V terms are ne-
glected. The dominant term is |λ(d)

t C(t)
7 | 2 ∼ |Vtd|2, but the

interference term is non-negligible and can be the source
of interesting CP -violating and isospin-breaking effects.
The CP -conjugate B decay follows from (10) by the re-
placement α → −α.

The decay B̄ → ρ(ω)�+�− has a richer kinematic struc-
ture. Defining q2, the invariant mass of the lepton pair,
and θ, the angle between the positively charged lepton

2 There is a factor of ∆‖(q2) missing in (41) of [3]. With the
new definition of the ξ‖ this factor is absent from the definition
of C(i)

9, ‖. Furthermore, we now define C(i)
7 by dividing through

the QCD tensor form factor (at scale µ = mb) rather than ξ⊥.
Hence C(i)

7 is expressed in terms of the coefficients C
(i)′
⊥ and

T
(i)′
⊥,+ defined at the end of Sect. 2.1 (see also the appendix).

and the B̄ meson in the center-of-mass frame of the lep-
ton pair, and summing over final state polarizations, the
decay information is contained in the double differential
distributions

d2Γ

dq2dcos θ

=
G2

F

128π3 M3
B S λ(q2, m2

V )3
(αem

4π

)2

×
{

(1 + cos2 θ)
2q2

M2
B

ξ⊥(q2)2

×
[ ∑

q=u,t

|λ(d)
q |2

(
|C(q)

9, ⊥(q2)|2 + δqt C2
10

)

− 2|λ(d)
u λ

(d)
t | Re

(
eiα C(u)

9, ⊥(q2) C(t)∗
9, ⊥(q2)

) ]

+ (1 − cos2 θ)
(

E ξ‖(q2)
mV

)2

×
[ ∑

q=u,t

|λ(d)
q |2

(
|C(q)

9, ‖(q
2)|2 + δqtC

2
10

)

− 2|λ(d)
u λ

(d)
t | Re

(
eiα C(u)

9, ‖(q
2) C(t)∗

9, ‖ (q2)
) ]

− cos θ
8q2

M2
B

ξ⊥(q2)2

× C10

[
|λ(d)

t |2 Re
(
C(t)
9, ⊥(q2)

)
− |λ(d)

u λ
(d)
t | Re

(
eiα C(u)

9, ⊥(q2)
)]}

, (11)

where

λ(q2, m2
V )

=

[(
1 − q2

M2
B

)2

− 2m2
V

M2
B

(
1 +

q2

M2
B

)
+

m4
V

M4
B

]1/2

.(12)

The lepton mass is set to zero, so this result applies to
� = e, µ. The CP -conjugate B decay follows from (11) by
the replacement α → −α. The terms with angular depen-
dence (1±cos2 θ) correspond to the decay into transversely
and longitudinally polarized ρ(ω)’s, respectively. The term
proportional to cos θ generates a forward–backward asym-
metry with respect to the plane perpendicular to the lep-
ton momentum in the center-of-mass frame of the lepton
pair.

2.4 Overview of amplitudes

We briefly discuss the qualitative features of the decay
amplitudes from which the main characteristics of the
observables that we analyze in the following section can
be deduced. Beginning with B → V γ we see from Ta-
ble 4 that the process is dominated by the short-distance
electromagnetic penguin amplitude proportional to Ceff

7 .
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Table 4. Breakdown of the decay amplitudes C(i)
7 for B → ργ

and ωγ

C(t)
7 C(u)

7

Ceff
7 −0.309 0

C(1)′ −0.060 − 0.013i 0.063 + 0.055i
T (0) (annih.) 0 0

T (1)′ (ρ)
(ω)

−0.009 − 0.012i
−0.009 − 0.013i

−0.031 − 0.012i
−0.029 − 0.013i

α0
s/mb (annih.)

0.009 (ρ−)
−0.005 (ρ0)
−0.004 (ω)

−0.125 (ρ−)
−0.012 (ρ0)

0.011 (ω)
(ρ−)

α1
s/mb (ρ0)

(ω)

0.001 + 0.000i
0.000 − 0.001i
0.001 − 0.001i

0.000 − 0.004i
0.000 + 0.002i
0.000 + 0.002i

(ρ−)
sum (ρ0)

(ω)

−0.369 − 0.024i
−0.383 − 0.026i
−0.383 − 0.027i

−0.093 + 0.039i
0.019 + 0.045i
0.045 + 0.042i

However, there is an important radiative correction C(1)′

to the quark matrix element 〈γd|H(t,u)
eff |b〉 [27], as well as

a sizeable correction from spectator scattering [3,4] spe-
cific to the exclusive decays. It is worth noting that these
two corrections add constructively in the top-sector of the
effective Hamiltonian (C(t)

7 ), but tend to cancel in the up-
sector. The most distinctive feature of exclusive b → dγ
transitions is the large weak annihilation contribution to
B± → ρ±γ, which has been discussed extensively [4,5,
28–31]. Although formally suppressed by a factor of 1/mb,
the annihilation amplitude is the largest contribution to
C(u)
7 for B± → ρ±γ, because it is enhanced by a Wilson

coefficient ten times larger than Ceff
7 . The leading anni-

hilation amplitude is short-distance dominated and can
be computed in the heavy quark limit. However, as dis-
cussed in the appendix, there is a large theoretical un-
certainty associated with this computation due to both
parameter uncertainties (fB , λB+) and power corrections.
The remaining power-suppressed amplitudes listed in Ta-
ble 4 are small effects and relevant only to the extent that
they provide the leading source of difference between ρ0

and ω, or, in the case of b → s transitions K∗+ and K∗0

[32]. The table shows that the difference of ρ0 and ω is
negligible, but it should be remembered that the hadronic
parameters of the ω have been set equal to those of ρ0 in
the absence of better information.

From a phenomenological point of view, the complete
information about the four different B → ργ decays is
encoded in the parameters |(C(t)

7 )ρ0 | 
 0.38,

(C(t)
7 )ρ+

(C(t)
7 )ρ0

− 1 ≡ δ+ + iη+

2

 −0.04 + 0.00i, (13)

and

(C(u)
7 )ρ0

(C(t)
7 )ρ0

≡ ε0 eiθ0 
 −0.06 − 0.11i,

(C(u)
7 )ρ+

(C(t)
7 )ρ+

≡ ε+ eiθ+ 
 0.24 − 0.12i. (14)

The discussion of the theoretical errors of these parame-
ters is deferred to the following sections. The decay ampli-
tudes are then proportional to 1−Rutεiei(θi±α) (i = 0, +),
where

λ(d)
u /λ

(d)
t = −Rut eiα (15)

with Rut 
 0.46, and α 
 94◦ in the standard model,
and the upper (lower) sign refers to the decay of a B̄ (B)
meson.

The amplitude structure of B → V �+�− is somewhat
more complicated due to the presence of the axial-vector
short-distance contribution proportional to C10, the du-
plication of amplitudes for transverse and longitudinal po-
larization of the vector meson, and the q2-dependence of
these amplitudes. For very small q2 the amplitude is dom-
inated by the photon pole and exhibits a behavior qualita-
tively very similar to that discussed above for a real pho-
ton. In most of the region, in which our theoretical treat-
ment is applicable (q2 < 7 GeV2), C10 and the longitudinal
amplitude determine the decay characteristics with the ex-
ception of the forward–backward asymmetry. The latter is
directly proportional to the expression in square brackets
in the last line of (11), and is therefore sensitive to the
real part of C(t)

9,⊥ and e±iα C(u)
9,⊥, which is expected to go

through zero in the q2-range of interest. Table 5 gives the
values for C(t,u)

9,a (a =⊥, ‖) at q2 = 5 GeV2 for the decays to
the ρ meson. We note again that the two-loop correction
C(1) to the quark matrix element 〈γ∗d|H(t,u)

eff |b〉 is rather
large, in fact as large as the contributions from four-quark
operators at leading order in αs contained in the functions
Y (i)(q2). This is true in particular for the amplitude in the
up-sector, which was calculated only recently [6] (see also
[7]). Similarly to the radiative decay the power-suppressed
weak annihilation amplitude is the largest remaining term
in the transverse amplitude of the decay to ρ±. Turning to
the longitudinal amplitudes C(t,u)

9,‖ , we should recall that we
do not include 1/mb-corrections in this case. The reason
for this is that the important isospin-breaking effects exist
already at leading power as is evident from the entry for
T (0) (annih.) in Table 5. This comes from a weak annihila-
tion contribution to B → ρ �+�−, which is not suppressed
by factors of αs or 1/mb relative to the short-distance am-
plitude [3], and which now also has a non-vanishing (and
rather uncertain) absorptive part. This leads to a large
difference of the longitudinal amplitude in the up-sector
between the charged and neutral ρ final state similar to
the situation for C(u)

7 (now including the absorptive part).
The amplitude in the up-sector is correspondingly uncer-
tain (see the discussion in the appendix).

In the following sections we perform a detailed anal-
ysis of the observables of interest, including theoretical
error estimates not represented in Tables 4 and 5. The ta-
bles should provide useful information to understand the
numerics and parameter dependences of the various ob-
servables.
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Table 5. Breakdown of the decay amplitudes C(t,u)
9,a (q2 = 5 GeV2) for B → ρ �+�−.

We define aCeff
7 ≡ (2mbMB/q2) Ceff

7 for C(t)
9,⊥ and aCeff

7 ≡ (2mb/MB) Ceff
7 for C(t)

9,‖

C(t)
9,⊥ C(u)

9,⊥ C(t)
9,‖ C(u)

9,‖

C9 4.30 0 4.30 0
Y (q2) 0.51 + 0.06i −0.07 − 0.84i 0.51 + 0.06i −0.07 − 0.84i
aCeff

7 −3.01 0 −0.54 0
C(1) −0.82 − 0.14i 0.23 + 1.27i −0.39 − 0.01i −0.07 + 0.72i

T (0) (ρ−)
(annih.) (ρ0)

0 0
0.04 − 0.03i

−0.02 + 0.01i
1.31 − 0.86i
0.13 − 0.09i

T (1) (ρ−)
(ρ0)

−0.21 − 0.15i −0.09 − 0.15i
0.05 − 0.04i
0.02 − 0.05i

−0.08 − 0.07i
−0.09 − 0.04i

α0
s/mb

(ρ−)
(ρ0)

0.07 − 0.03i
−0.04 + 0.02i

0.39 − 1.06i
0.04 − 0.11i

– –

α1
s/mb

(ρ−)
(ρ0)

0.03 + 0.00i
−0.02 + 0.00i

0.00 − 0.03i
0.00 + 0.02i

– –

sum
(ρ−)
(ρ0)

0.87 − 0.25i
0.72 − 0.21i

0.46 − 0.81i
0.10 + 0.20i

3.97 − 0.00i
3.88 + 0.02i

1.08 − 1.05i
−0.11 − 0.25i

3 Phenomenological analysis

In this section we discuss several observables related to
rare radiative B decays which are currently studied at B
factories, or will be measured at future high-luminosity
experiments. The B → V γ decays have been recently
studied within the QCD factorization framework by Ali
et al. [15], and by Bosch and Buchalla [16], and in most
aspects our analysis leads to similar results. In the case
of B → K∗�+�− decays we perform an update of our
previous work [3]. Finally, we extend the discussion to
B → ρ(ω)�+�− decays. Here the inclusion of the recently
calculated two-loop correction to the b → dγ∗ vertex from
light-quark loops [6,7] turns out to have a significant nu-
merical impact on the various decay asymmetries. In the
following discussion we focus on the sensitivity of the ra-
diative decays to the theoretical input parameters, includ-
ing the CKM elements, short-distance Wilson coefficients,
and hadronic parameters.

3.1 B → V γ branching fractions

We first consider the B → K∗γ decays. Using the central
values and theoretical uncertainties for the input param-
eters in Table 2, we obtain for the branching fractions

Br(B0 → K∗0γ)

=
(

TK∗
1 (0)
0.38

)2

(7.4 +0.6
−0.5

∣∣
Vts

+0.7
−0.7

∣∣
had) · 10−5, (16)

Br(B+ → K∗+γ)

=
(

TK∗
1 (0)
0.38

)2

(7.4 +0.6
−0.5

∣∣
Vts

+0.6
−0.7

∣∣
had) · 10−5. (17)

The main theoretical uncertainty comes from the B → K∗
tensor form factor, the other hadronic and CKM param-
eter uncertainties being small as indicated.3 Comparison
with Table 6 shows that with the form factor from light-
cone sum rules, the theoretical value is too high compared
to data. Since the short-distance physics explored in in-
clusive b → sγ decays is well in line with the standard
model expectation, we must conclude that either there
are large power corrections not included in the computa-
tion, or the tensor form factor is smaller than 0.38. The
existence of large power corrections beyond the known an-
nihilation terms would invalidate the basic assumption of
the factorization approach that the heavy quark expan-
sion provides a sensible approximation. In the absence of
any direct determinations of the form factor, we consider
the reduction of the form factor a viable option, and use
the branching fraction data to obtain [3]

TK∗
1 (0)

∣∣
exp = 0.28 ± 0.02. (18)

This number will be taken as a reference value in the fol-
lowing.

The uncertainty in the form factors is also a major
obstruction to a clean interpretation of the B → ργ de-
cays. The situation for K∗ may suggest that the B → ρ
tensor form factor should be reduced in equal proportion,
in which case we obtain for the branching fractions aver-
aged over B decay and the corresponding CP -conjugate

3 The theoretical error is computed from the parameter un-
certainties given in Table 2, including the renormalization-scale
dependence, but no attempt is made to quantify the error from
higher-order perturbative corrections and power corrections.
This should always be kept in mind in the interpretation of
theoretical errors.
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Table 6. Experimental results for the CP -averaged B → V γ branching ratios (in
units of 10−6)

BABAR [10,33] BELLE [11,34] CLEO [35] Average

Br(B0 → K∗0γ) 39.2 ± 2.0 ± 2.4 40.1 ± 2.1 ± 1.7 45.5+7.2
−6.8 ± 3.4 40.1 ± 2.0

Br(B+ → K∗+γ) 38.7 ± 2.8 ± 2.6 42.5 ± 3.1 ± 2.4 37.6+8.9
−8.3 ± 2.8 40.3 ± 2.6

Br(B0 → ωγ) < 1.0 < 0.8 < 9.2 < 0.8

Br(B0 → ρ0γ) < 0.4 < 0.8 < 17 < 0.4

Br(B+ → ρ+γ) < 1.8 < 2.2 < 13 < 1.8

B̄ decay

Br(B0 → ρ0γ)

=
(

|Vtd|
8.25 · 10−3

)2 (
T ρ

1 (0)
0.21

)2

(5.0+0.5
−0.5) · 10−7, (19)

Br(B+ → ρ+γ)

=
(

|Vtd|
8.25 · 10−3

)2 (
T ρ

1 (0)
0.21

)2

(10.3+1.5
−1.2) · 10−7. (20)

On the other hand, if the origin of the large B → K∗
form factor in QCD sum rules is a misestimate of SU(3)
breaking effects, T ρ

1 (0) 
 0.29 is not excluded and the
central values of the branching fractions are rescaled by
almost a factor of 2. The branching fraction for B0 →
ωγ equals Br(B0 → ρ0γ) within the given accuracy, and
under the assumption that the form factors are the same.
Comparison with the experimental limits on exclusive b →
dγ transitions in Table 6 favors the scenario with a small
form factor when the standard range of |Vtd| is assumed.
In the following, however, we continue to use the default
value T ρ

1 (0) = 0.29 ± 0.04.
It is often stated that the ratios of B → ργ to

B → K∗γ branching fractions are better suited for a
determination of |Vtd|. This is based on the assumption
that the ratio F = T ρ

1 (0)/TK∗
1 (0) is better known than

the form factors themselves. Unfortunately, given that we
do not know for certain whether the current estimates of
the form factors are affected by a normalization or SU(3)
breaking problem, we must assume 0.75 < F < 1.05 at
least.4 The ratios of CP -averaged branching fractions are
determined by

Br(B0 → ρ0γ)
Br(B0 → K∗0γ)

=
1
2
F 2

∣∣∣∣Vtd

Vts

∣∣∣∣
2 {

1 − 2Rut ε0 cos α cos θ0 + R2
ut ε20

}

=
1
2
F 2

∣∣∣∣Vtd

Vts

∣∣∣∣
2 {

1 − 2Rut cos α [−0.06+0.06
−0.06]

+R2
ut [0.02+0.02

−0.01]
}

(21)

4 The lower limit corresponds to the assumption that QCD
sum rules predict the ratio of form factors correctly. The upper
limit assumes that T ρ

1 (0) is predicted correctly and T K∗
1 (0) is

determined by data which yields (18).

and

Br(B+ → ρ+γ)
Br(B+ → K∗+γ)

= F 2
∣∣∣∣Vtd

Vts

∣∣∣∣
2 {

1 − 2Rut ε+ cos α cos θ+ + R2
ut ε2+

}

= F 2
∣∣∣∣Vtd

Vts

∣∣∣∣
2 {

1 − 2Rut cos α [0.24+0.18
−0.18]

+R2
ut [0.07+0.12

−0.07]
}

, (22)

where a small phase space correction (M2
B −m2

ρ)
3/(M2

B −
m2

K∗)3 
 1.02, and a SU(3) breaking correction from
|Ct

7|ρ/|Ct
7|K

∗ − 1 = ±0.02 can be safely neglected.5 The
global CKM fit [20] returns Rut = 0.46±0.06 and cos α =
−0.07 ± 0.20, so the interference term is expected to be
suppressed. Since the value of ε0 cos θ0 is rather small due
to a partial cancellation of the perturbative corrections
C(1) and T (1) (see Table 4), the B0 → ρ0γ (and to a
slightly lesser extent also B0 → ωγ) decay is rather in-
sensitive to Rut and α. The neutral ratio thus provides
a direct constraint on |Vtd/Vts| for a given value of the
ratio of tensor form factors F = T ρ

1 (0)/TK∗
1 (0). For the

charged ratio ε+ cos θ+ is dominated by the weak annihi-
lation contribution, to which we assign a 50% error (see
the discussion in the appendix). This error is by far the
largest uncertainty in B+ → ρ+γ, and makes the charged
ratio somewhat less useful to constrain |Vtd/Vts|.

At this point it is appropriate to compare our results
ε0 cos θ0 = −0.06 ± 0.06 and ε+ cos θ+ = 0.24 ± 0.18 to
[15,16]. Bosch and Buchalla employ a formalism identical
to ours and give 0.0 ± 0.1 and 0.4 ± 0.4 for these parame-
ters. We find agreement with their central values, when we
adjust the parameter λB,+ to the smaller value 350 MeV
used by them. Ali et al. do not give ε0 cos θ0 and ε+ cos θ+
explicitly, but the curly brackets in (21) and (22) for which
we obtain 1.00 ± 0.01 and 1.03 ± 0.06 correspond to their
1 + ∆R = 1.09 ± 0.07 and 1.12 ± 0.10.

5 With T ρ
1 (0) = 0.21 instead of 0.29, the central values

of the numerical entries in (21) change from (−0.06, 0.02) to
(−0.01, 0.01) and in (22) from (0.24, 0.07) to (0.40, 0.18).
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3.2 B → V �+�− branching fractions

The differential branching fractions for B → K∗�+�− de-
cays have been discussed in detail in our previous analysis
[3]. The present work includes changes of input parameters
(see Table 2), the now available NNLO anomalous dimen-
sions relevant for the Wilson coefficient C9 [17,18], as well
as a modification of the treatment of form factors. In par-
ticular, the transverse form factor is now taken from data
via (18), and we no longer use the simple 1/En (n = 2, 3)
model for the q2-dependence of the form factors. The com-
bined effect of these changes is to decrease the branching
fraction by about 30% relative to [3], almost exclusively
due to the change in the form factor input.

The q2-spectrum rises sharply for small q2, where it
is dominated by the photon pole and possibly “contam-
inated” by hadronic resonances. On the other hand the
factorization approach is valid only for q2 ≤ 7 GeV2, away
from the charm threshold. We therefore advocate that
measurements of exclusive branching fractions be com-
pared to the integral

6 GeV2∫
1 GeV2

dq2 dBr(B+ → K∗+�+�−)
dq2

=
(

AK∗
0 (4 GeV2)

0.66

)2

(3.33+0.40
−0.31) · 10−7 (23)

of the CP -averaged spectrum. The corresponding integral
for the neutral B meson decay is about 10% smaller. The
largest hadronic uncertainty arises from the longitudinal
form factor, which has therefore been scaled out, such that
only the residual A0-dependence is included in the error.

Recently the B factories have presented their first re-
sults for (partially) integrated B → K∗�+�− decay rates
[12,13]. Of particular interest to us is the second bin of
the Belle measurement [14], which translates into

8 GeV2∫
4 GeV2

dq2 dBr(B → K∗�+�−)
dq2

= (4.8 +1.4
−1.2|stat. ± 0.3|syst. ± 0.3|model) · 10−7, (24)

which we interpret as an average of the charged and neu-
tral decay. The spectrum is nearly flat in this range, so
we may compare one half of this number to our theoret-
ical result integrated from q2 = 4 GeV2 to 6 GeV2. We
obtain (1.2 ± 0.4) · 10−7 (now including the uncertainty
in AK∗

0 (0)), which is only about one half of the central
value of the experimental result. It will be interesting to
see whether this difference is due to a detection bias, or
rather points to a problem with the theoretical input.

A new result of the present work is the NNLL (next-
to-next-to-leading logarithmic) prediction for the B →
ρ �+�− decay rate below the charm threshold. Integrat-
ing the spectrum of the CP -averaged decay as above, we
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Fig. 1. CP -averaged differential branching ratio for B0 →
ρ0�+�− at NLO as a function of q2 (solid line, in units of
10−9 GeV−2). The light (yellow) band shows the total theo-
retical uncertainty. In the dark (green) band, the uncertainties
related to the CKM parameters and the form factor Aρ

0(0) are
excluded. The dashed line shows the LO result

obtain

6 GeV2∫
1 GeV2

dq2 dBr(B0 → ρ0�+�−)
dq2 (25)

=
(

|Vtd|
8.25 · 10−3

Aρ
0(4 GeV2)

0.50

)2

(4.2+0.6
−0.4) · 10−9,

6 GeV2∫
1 GeV2

dq2 dBr(B+ → ρ+�+�−)
dq2 (26)

=
(

|Vtd|
8.25 · 10−3

Aρ
0(4 GeV2)

0.50

)2

(9.6+1.5
−1.1) · 10−9.

In Fig. 1 we show the spectrum dBr(B0 → ρ0�+�−)/dq2.
The qualitative features are similar to B → K∗�+�−,
namely the NLO correction is very important at small q2,
where the transverse amplitude is large, but at large q2 the
spectrum is flat, and the NLO corrections from different
sources cancel to produce a negligible net effect.

By the time the B → ρ �+�− decays can be mea-
sured, the CKM elements, as well as the short-distance
Wilson coefficients C9 and C10 for b → s�+�− transitions,
will be known with high accuracy. The B → ρ �+�− de-
cays can provide additional insight into the structure of
flavor-changing neutral current interactions in the context
of new-physics scenarios with non-minimal flavor viola-
tion, where Cd

9 and Cd
10 can differ both, in magnitude and

in phase, from their counterparts in the b → s sector.
To achieve the necessary theoretical accuracy, it is cru-
cial to control the hadronic uncertainties. We may expect
the form factors at small q2 to be known with much better
accuracy than today, presumably from lattice simulations.
In this situation the factorization formalism should allow
us to obtain stringent constraints on Cd

9 and Cd
10 from the

neutral decay mode. On the other hand, the theoretical
control of charged decays remains more challenging be-
cause of the leading-power annihilation effects whose q2
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behavior strongly depends on the model for the B meson
wave function.6

3.3 Isospin asymmetries

The isospin asymmetry in B → K∗γ has been discussed
in [32]. Our calculation gives (all rates averaged over the
CP -conjugate decay)

∆(K∗γ) =
Γ (B0 → K∗0γ) − Γ (B+ → K∗+γ)
Γ (B0 → K∗0γ) + Γ (B+ → K∗+γ)

=
0.28

TK∗
1 (0)

(5.8+3.3
−2.9)%, (27)

which is consistent with the experimental number (3.6 ±
3.8)% deduced from Table 6. As already discussed, isospin
breaking in radiative decays is a power-suppressed effect.
Although the calculation is believed to capture the dom-
inant effect, its theoretical status is less certain than the
calculation of branching fractions and CP asymmetries.
Our result is smaller than the result of the original cal-
culation [32], because we evaluate the Wilson coefficients
at a scale of order mb rather than (mbΛQCD)1/2. The mo-
tivation for this choice is that the four-quark operators
factorize below the scale µ 
 mb, and the gluon exchange
between all quark lines responsible for the renormalization
group running of the Wilson coefficients is no longer rel-
evant at smaller scales. Our result is larger than the one
given in [16], partially because in this paper the isospin-
breaking hard scattering corrections (denoted by “α1

s/mb”
in Table 4) are not included, but primarily because the
larger QCD sum rule value of the K∗ tensor form factor
is used there.

The extension of the isospin analysis to B → K∗�+�−
has been discussed in [36]. We refrain from giving an up-
dated discussion here, but only mention that with the dif-
ferent choice of scale described above, we expect an even
smaller isospin asymmetry than the estimate in [36], which
implies a larger sensitivity to isospin-violating new-physics
effects.

While the isospin asymmetry in B → K∗γ decays
mainly probes the magnitude of penguin Wilson coeffi-
cients in weak annihilation, the isospin asymmetry for ργ
decays is sensitive to CKM parameters through the in-
terference with a large tree annihilation amplitude with a
different CP phase. We obtain for the isospin asymmetry
(again an average over the CP -conjugate decay is under-
stood)

∆(ργ) =
Γ (B+ → ρ+γ)
2Γ (B0 → ρ0γ)

−1 = (−4.6 +5.4
−4.2

∣∣
CKM

+5.8
−5.6

∣∣
had)%.

(28)
The largest hadronic error (4%) comes from the weak an-
nihilation contribution to which we assign a 50% error.

6 These effects are suppressed in the branching fraction in the
standard model, because cos α is small. This suppression need
not hold in extensions of the standard model such as discussed
here.
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Fig. 2. Isospin asymmetry ∆(ργ) as a function of the CKM
angle α. The band displays the total theoretical uncertainty
which is mainly due to weak annihilation. The vertical dashed
lines limit the range of α obtained from the CKM unitarity
triangle fit

The uncertainty labeled “CKM” illustrates the sensitiv-
ity to the CKM parameters. Using the abbreviations (13)
and (14), and neglecting terms quadratic in δ+, ε0 
 0.1
and η, we can approximate the exact result for the isospin
asymmetry by

∆(ργ)

 δ+ − 2 Rut cos α (ε+ cos θ+ − ε0 cos θ0) + R2

ut ε2+

= −0.076+0.042
−0.049 − 2Rut cos α [0.30+0.16

−0.16]

+ R2
ut [0.07+0.12

−0.06] (29)

with a relative error of less than 10%.7 For α near 90◦ the
isospin asymmetry is predicted to be small, and the nu-
merical result is dominated by the isospin asymmetry in
the top quark sector, δ+. Our result (28) therefore differs
from [15], where the term δ+ is neglected. Equation (29)
also shows that there is a large sensitivity to cos α, al-
though with a large uncertainty related to the weak anni-
hilation amplitude. This dependence is shown in Fig. 2.

The isospin asymmetry in the differential decay spec-
trum for B → ρ �+�− is defined in analogy to (28). In
the limit q2 → 0 its numerical value approaches (29). For
invariant lepton-pair masses well above the photon pole
at q2 = 0 the decay spectrum is dominated by the longi-
tudinal rate, and therefore the isospin asymmetry mainly
comes from the amplitudes C(i)

9,‖ with i = t, u. It can be
seen from Table 5 that the dominant effect comes from
the leading-power weak annihilation contribution [3] to
the charged decay mode B+ → ρ+�+�− which, as already
explained, has a large uncertainty. When cosα is not near
zero, the asymmetry is generated mainly by C(u)

9,‖ and the
sign of the asymmetry is determined by − cos α just as
for B → ργ. On the other hand, for small cosα (expected
in the standard model), the asymmetry is small, comes
mainly from the top quark sector, and its sign is oppo-
site to (28). In any case, the effect is diluted compared to

7 With T ρ
1 (0) = 0.21 instead of 0.29, the central values of

the numerical entries in (29) change from (−0.076, 0.30, 0.07)
to (−0.104, 0.42, 0.18).
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Fig. 3. Isospin asymmetry ∆(ρ �+�−) as a function of q2. The
solid (long-dashed) line shows the next-to-leading (leading) or-
der result for α = 94◦. The band represents the hadronic un-
certainty. The two dashed lines give ∆(ρ �+�−) for α = 24◦

(lower curve) and α = 164◦ (upper curve)

B → ργ because of the isospin-symmetric contribution of
the Wilson coefficient C10 to the longitudinal amplitude.
This situation is illustrated in Fig. 3, where we show the
predicted asymmetry for α = 24◦, 164◦ and 94◦ (default).
For the last value of α the theoretical uncertainty is also
shown. The maximum of the isospin asymmetry around
q2 
 1 GeV2 can be explained by the observation that
the longitudinal amplitude for the charged decay becomes
dominated by the leading-power weak annihilation contri-
bution for q2 → 0, since λB,−(q2)−1 increases logarithmi-
cally. Hence the isospin asymmetry increases (coming from
larger q2) until the transverse decay amplitude wins over
and the isospin asymmetry turns to the negative value
(29) for q2 = 0. A reliable prediction is currently possible
only in the larger q2 region shown in the figure.

As mentioned above the B → ρ �+�− decays are mainly
of interest in the context of scenarios where physics be-
yond the standard model modifies the electroweak pen-
guin coefficients C9, C10 in b → d transitions. If θ de-
notes the extra CP phase of C9, the isospin asymmetry
depends, roughly speaking, on αeff = α − θ. Since α will
be known, the sensitivity of the isospin asymmetry to α
shown in Fig. 3 translates into a sensitivity to θ. The the-
oretical uncertainty of the standard model reference value
due to weak annihilation implies that only a significant
new phase could be unambiguously detected. In this case
a significant modification of the absolute value of C9 and
C10 is also probable and might be directly observable in
the lepton-invariant mass spectra.

3.4 Direct CP asymmetries

The direct CP asymmetries for B → ργ decays are given
by

ACP (ρ0γ) =
Γ [B̄0 → ρ0γ] − Γ [B0 → ρ0γ]
Γ [B̄0 → ρ0γ] + Γ [B0 → ρ0γ]

=
2Rutε0 sin θ0 sin α

1 − 2Rutε0 cos θ0 cos α + R2
utε

2
0
, (30)
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Fig. 4. Direct CP asymmetry in B → ρ0γ (solid), B+ →
ρ+γ (long-dashed) and B → ωγ (short-dashed) decay as a
function of the CKM angle α. The band shows the theoretical
uncertainty for the case of B → ρ0γ. Note that we display
minus the CP asymmetry

and an analogous equation for the charged B decay with
(ε0, θ0) → (ε+, θ+). The values of εi cos θi and ε2i have
already been given in (21) and (22). Here we also need

ε0 sin θ0 = −0.11+0.03
−0.04, ε+ sin θ+ = −0.12+0.03

−0.04. (31)

The largest theoretical uncertainties are from the residual
renormalization-scale dependence (±0.03) and the charm
quark mass (±0.02). This reflects the fact that a next-to-
leading order calculation of the branching fractions results
in leading-order predictions of direct CP asymmetries,
which are therefore more sensitive to unknown higher-
order and power corrections. It is worth noting that the
product ε+ sin θ+ is less dependent on the weak annihila-
tion contribution than the individual factors ε+ and sin θ+,
since the leading annihilation amplitude has no strong
phase relative to the leading electromagnetic penguin am-
plitude. It follows from (31) that, within uncertainties, the
CP asymmetries in neutral and charged B → ργ decays
are of similar size

ACP (ρ0γ) = (−10.4 +1.6
−2.4

∣∣
CKM

+3.0
−3.6

∣∣
had)%,

ACP (ρ+γ) = (−10.7 +1.5
−2.0

∣∣
CKM

+2.6
−3.7

∣∣
had)%. (32)

The dominant dependence of the CP asymmetries on the
CKM parameters is through Rut sin α. The corresponding
constraint in the (ρ̄, η̄) plane is discussed in Sect. 3.5. In
Fig. 4 we show the dependence of the direct CP asymme-
tries on the CKM angle α. The asymmetries for B → ρ0γ
and B → ωγ are indistinguishable within uncertainties.
Our result is in agreement with [4,15] within theoretical
uncertainties, though [15] displays a slightly larger differ-
ence between the neutral and charged CP asymmetries.

The direct CP asymmetry arises in B → ρ �+�− decays
from the interference between the C(u)

9,a (q2) and C(t)
9,a(q2)

amplitudes with different strong phases. From Table 5 we
deduce that the largest contributions to strong phases
come from the one-loop function Y (q2), from the coeffi-
cient function C(1), and, in the case of the charged decay,
from annihilation topologies which involve the B → γ∗

form factors ξBγ∗

⊥,‖ (q2) (see appendix). The two-loop vir-
tual correction C(1) calculated in [6,7] plays an essential
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Fig. 5. Direct CP asymmetries in B0 → ρ0�+�− (lower set
of curves) and B+ → ρ+�+�− as a function of q2. The solid
(dashed) curves show the next-to-leading order (leading-order)
result. The widths of the bands represent the hadronic uncer-
tainty. Note that we display minus the CP asymmetry

role here, since it cancels a large part of the imaginary
part of Y (u)(q2) in C(u)

9,⊥ and C(u)
9,‖ . For the charged decay

B± → ρ±�+�− the residual relative strong phase is then
dominated by the rather uncertain annihilation effects.
For the neutral decay B0 → ρ0�+�−, on the contrary, the
strong phases are expected to be rather small, leading to
a small CP asymmetry within the standard model. Our
numerical prediction for the two decay modes is shown in
Fig. 5. The increase of −ACP (ρ+�+�−) near q2 
 1 GeV2

occurs for the same reason as discussed for the isospin
asymmetry and is correspondingly uncertain. In exten-
sions of the standard model α is again replaced by αeff ,
but given the theoretical errors and given that the CP
asymmetry is expected to be nearly maximal in the stan-
dard model, it will be difficult to disentangle a new phase
unless the CP asymmetry in the charged decay mode is
strongly suppressed.

3.5 CKM constraints

As seen in previous sections, measurements of the branch-
ing ratios, isospin and CP asymmetries in B → ργ decays
are sensitive to the CKM elements and thus provide in-
teresting constraints on the parameters ρ̄ and η̄, which
define the apex of the unitarity triangle. In this section
we summarize these constraints.

At present, there exists only an upper experimental
limit for the B → ργ branching fractions. Interestingly,
our theoretical result (19) already saturates the exper-
imental bound, and therefore detection of this decay is
expected in the very near future. The existing upper limit
on B → ρ0γ translates into a useful bound on |Vtd|, which
is complementary to the bound from the non-observation
of BsB̄s mixing. The key point is that the curly bracket in

�0.2 0.2 0.4 0.6 0.8 1

�0.2

0.2

0.4

0.6

0.8

1

ρ̄

η̄

∆(ργ)

ACP(ρ0γ)

Br (B → ρ0γ)

Fig. 6. Constraints on the unitarity triangle from the ratio of
the CP -averaged B0 → ρ0γ and B0 → K∗0γ branching frac-
tions (solid black), the isospin asymmetry in B → ργ (dashed)
and the direct CP asymmetry in B0 → ρ0γ (dash-dotted). The
area to the left of the black line is excluded by the experimental
limit on B0 → ρ0γ. See text for explanations

(21) is constrained to be close to 1. Adding the dominant
parameter dependencies linearly and doubling the error
on the input values of (ρ̄, η̄) we find

0.94 < 1 − 2Rut ε0 cos α cos θ0 + R2
ut ε20 < 1.05. (33)

Using the data from Table 6 this translates into the bound

∣∣∣∣Vtd

Vts

∣∣∣∣ =
1 ± 0.03

F

(
2Br(B0 → ρ0γ)
Br(B0 → K∗0γ)

)1/2

< 0.21, (34)

where we used the conservative range F > 0.7, which
gives the weakest bound. A similar bound has been ob-
tained in [16].8 This limit already cuts into the range
|Vtd/Vts| = 0.204+0.029

−0.046 (CL = 0.05) obtained from the
standard fit [20]. This is displayed in Fig. 6, where the area
to the left of the solid black curve is excluded by (34), and
the standard values of (ρ̄, η̄) are shown as a point together
with their errors as in Table 2.9

No data currently exists for the isospin and direct CP
asymmetries. To illustrate the possible constraints we as-
sume that they are observed with a value that corresponds
to our theoretical expectations (29) and (32) without ex-
perimental error. The theoretical uncertainty from the in-
put parameters (excluding CKM parameters) then trans-
lates into the dashed (isospin asymmetry) and dash-dotted
(direct CP asymmetry in B → ρ0γ) bands in the figure.

8 In [15] an average over ρ0, ρ±, ω is performed, which re-
duces the significance of the constraint due to the larger the-
oretical uncertainty in B → ρ±γ and the weaker experimental
upper limit on the ρ± and ω final states.

9 The solid line becomes slightly inaccurate far away from
the standard range, since the dependence of (33) on (ρ̄, η̄) is
neglected.
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The constraint from the CP asymmetry in the charged
decay B± → ρ±γ is very similar to the neutral one in
the vicinity of the standard (ρ̄, η̄)-range and not shown.
The shape of these constraints can be understood from
the relations

Rut sin α =
η̄

(1 − ρ̄)2 + η̄2 ,

Rut cos α = 1 − 1 − ρ̄

(1 − ρ̄)2 + η̄2 . (35)

They imply to good approximation that the direct CP
asymmetry requires (ρ̄, η̄) to lie on a circle of radius 1/(2a)
with center (1, 1/(2a)) where

a =
ACP (ρ0γ)
2ε0 sin θ0

, (36)

which always passes through (1, 0). Similarly, the isospin
asymmetry constrains (ρ̄, η̄) to lie on a circle whose center
is always at η̄ = 0 and whose radius is determined from
(29). We see from Fig. 6 that the two asymmetry con-
straints intersect nearly orthogonally, the intersection re-
gion being shaded in grey. This area is further constrained
by the limit on the B → ργ branching fraction. The three
observables together (and a similar constraint from the
direct asymmetry in B± → ρ±γ) demonstrate that the
B → ργ decays alone provide valuable independent in-
formation on CKM parameters. Furthermore, if inconsis-
tencies with the standard CKM fit appeared, this would
point towards anomalous effects in b → dγ transitions.

3.6 Forward–backward asymmetries

The forward–backward asymmetry in B → V �+�− decays
is defined by

AFB(q2) ≡ 1
dΓ/dq2

( ∫ 1

0
d(cos θ)

d2Γ

dq2d cos θ

−
∫ 0

−1
d(cos θ)

d2Γ

dq2d cos θ

)

∝ Re
(
C(t)
9, ⊥(q2) − Rut e±iα C(u)

9, ⊥(q2)
)

, (37)

where the second line follows from (11). Note that we have
not performed an average over CP -conjugate decays for
the forward–backward asymmetry. The exponential reads
e−iα for B decay, and eiα for B̄ decay.

The next-to-leading order prediction of the forward–
backward asymmetry for the B → K∗�+�− decay has been
discussed in detail in our previous paper [3]. For the b → s

transitions the term C(u)
9, ⊥(q2) is negligible, because the cor-

responding Rut is very small. Hence there is no difference
between B and B̄ decay, and the asymmetry zero is de-
termined by the zero of the real part of C(t)

9, ⊥(q2). In [3] we
found that the next-to-leading order correction shifts the
zero by 30%, but once this correction is included, a precise
measurement of the location of the zero translates into a

determination of the Wilson coefficient C9 with an accu-
racy of about 10%. Our updated result for the position of
the forward–backward asymmetry zero reads

q2
0 [K∗0] = 4.36+0.33

−0.31 GeV2, q2
0 [K∗+] = 4.15+0.27

−0.27 GeV2.
(38)

The small difference compared to [3] is due to the differ-
ent treatment of form factors and the inclusion of isospin-
breaking power corrections in the present analysis.

In case of B → ρ �+�− decays there exists an impor-
tant new contribution from C(u)

9, ⊥(q2). As a consequence,
the decays of B or B̄, neutral or charged B mesons to
ρ �+�− may show significantly different forward–backward
asymmetries. When α is near 90◦ as expected in the stan-
dard model, we may approximate eiα 
 i sinα, and there-
fore the additional contribution to the forward–backward
asymmetry involves approximately

Rut sin α Im
(
C(u)
9⊥ (q2)

)
, (39)
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Fig. 7. The forward–backward asymmetry in a) B+ →
ρ+�+�−, b) B− → ρ−�+�−, and c) the CP -averaged B →
ρ0�+�− decay. The solid (dashed) line shows the next-to-
leading (leading) order result. The band represents the the-
oretical error due to hadronic uncertainties
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Table 7. Locations of the asymmetry zeros

B0 → ρ0 �+�− B̄0 → ρ0 �+�−

4.34 +0.02
−0.02

∣
∣
CKM

+0.45
−0.39

∣
∣
had 4.11 +0.02

−0.02

∣
∣
CKM

+0.26
−0.22

∣
∣
had

q2
0 [GeV2]

B+ → ρ+ �+�− B− → ρ− �+�−

3.56 +0.09
−0.12

∣
∣
CKM

+0.48
−0.57

∣
∣
had 4.48 +0.07

−0.06

∣
∣
CKM

+0.36
−0.34

∣
∣
had

i.e. the absorptive part of the amplitude from the up-
sector. We see from Table 5 that large contributions to
the absorptive part arise from the virtual corrections to
the b → d�+�− transition, Y (u)(q2) and C(1), and that,
in particular, the two-loop correction C(1) calculated in
[6,7] is as large as the one-loop term Y (u)(q2). The other
large contribution comes from weak annihilation and ex-
ists only for charged B decays. In Fig. 7 we show the ex-
pected forward–backward asymmetries for B± → ρ± �+�−
and the asymmetry for the CP -averaged B → ρ0 �+�−
decay rate.10 The locations of the asymmetry zeros are
shown in Table 7. As in the case of B → K∗�+�−, the lo-
cation of the asymmetry zero is a measure of C9 (now in
the b → d sector), but in addition information about the
phase can be obtained through the interference with the
tree-dominated amplitude in the up-sector.

4 Conclusions

Our analysis provides standard model expectations for
the exclusive, radiative and electroweak penguin decays
B → V γ and B → V �+�− (V = K∗, ρ, ω), extending our
previous work [3] to b → dγ and b → d�+�− transitions.
The theoretical framework is complete at next-to-leading
order in the strong coupling (except for weak annihilation
which is included only in leading order), and leading power
in the heavy quark expansion. We have also included 1/mb

power corrections, mainly from weak annihilation, which
are important for the isospin asymmetries.

The observables related to B → ργ decays can provide
interesting constraints on the CKM triangle as was also
recently discussed in [15,16]. The accuracy of these con-
straints is limited by hadronic uncertainties, mainly from
the hadronic form factors describing the B → ρ transition
(for branching fractions), B → γ transitions/weak anni-
hilation (for the isospin asymmetry), and from the scale
and charm quark mass uncertainty (for direct CP asym-
metries). Nevertheless, the simultaneous measurement of
branching fractions, isospin and CP asymmetries can be
used for an independent determination of the apex (ρ̄, η̄)
of the CKM triangle, which is complementary to the stan-
dard fit. In particular, if B0 → ρ0γ is not observed with a
branching fraction near the current upper limit 4 · 10−6, a
tension with the standard fit arises.

We compared our calculations for B → K∗�+�− with
the first experimental results on these decays. The central
10 The case of ω is not significantly different from ρ0.

value of the Belle data on the partially integrated lepton-
invariant mass spectrum is about a factor of 2 larger than
the theoretical prediction. Although the discrepancy is not
significant within current uncertainties, it will be interest-
ing to see how it develops. If the problem is theoretical,
this may result in the curious situation that the compari-
son with data seems to favor a larger form factor A0, but
a smaller tensor form factor T1. The present experimental
accuracy for the measurement of the forward–backward
lepton asymmetry in this decay mode is not yet compet-
itive with the theoretical one. In the future, however, we
expect significant constraints on the Wilson coefficient C9
in b → s�+�− transitions as already discussed in [3].

We performed the first next-to-leading order calcula-
tion of exclusive b → d�+�− transitions. In the long run
when detailed experimental information on these transi-
tions will become available, the CKM matrix can be as-
sumed to be known. Hence the various observables related
to B → ρ �+�− decays provide information on the modu-
lus and phase of the Wilson coefficient C9 in b → d�+�−
transitions or related coefficients in extended flavor mod-
els, which is of interest in the context of new-physics sce-
narios with non-minimal flavor violation. The theoretical
uncertainty related to hadronic input is currently sizeable,
but we may look forward to improved determinations of
B → ρ form factors, and perhaps, the mechanism of weak
annihilation, on the time scales of interest. These improve-
ments will add B → ρ �+�− to the list of rare processes
that play an essential role in the program to uncover the
origin of flavor violation.
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Appendix A: The amplitudes T (u,t)
a

In this appendix we present the generalization of the am-
plitudes T (t)

a (a =⊥, ‖) given in [3] for B → K∗�+�− to the
case of ρ or ω in the final state, and the new amplitudes
T (u)

a as defined in (3). In [3] we used a set of Wilson coef-
ficients denoted by C̄i. The exact relation between the C̄i

and the Ci given in Table 1 can be found in the appendix
of [3].

The coefficient functions C
(i)
a and T

(i)
a, ± defined in (4)

have the expansions

C(i)
a = C(0,i)

a +
αsCF

4π
C(1,i)

a + . . . , (A.1)

T
(i)
a, ±(u, ω) = T

(0,i)
a, ± (u, ω) +

αsCF

4π
T

(1,i)
a, ± (u, ω) + . . .
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(A.2)

In the following we give the expressions for the coeffi-
cients C

(i)
a and T

(i)
a, ±. The strong coupling is evaluated

at the scale µ 
 mb in (A.1) and at µf = (0.5 GeVµ)1/2 

(mbΛQCD)1/2 in (A.2), which corresponds to the typical
virtualities in the two terms. In contrast to our earlier
analysis, we always evaluate the Wilson coefficients at
µ 
 mb, since the running of the four-quark operators
ends at this scale.

A.1 Form factor term

The coefficients C
(0,t)
a follow from (12) and (14) in [3]. The

corresponding expressions for C
(0,u)
a are obtained by the

replacements Ceff
7 → 0 and

Y (s) → Y (u)(s) ≡
(

4
3
C1 + C2

)
[h(s, mc) − h(s, 0)] ,

(A.3)
where h(s, mq) is given in (11) of [3].

The first-order corrections C
(1,i)
a are divided into a

“factorizable” and a “non-factorizable” term according to
C

(1,i)
a = C

(f,i)
a + C

(nf,i)
a . The factorizable correction reads

C
(f,t)
⊥ = Ceff

7

(
ln

m2
b

µ2 − L + ∆M

)
, (A.4)

C
(f,t)
‖ = −Ceff

7

(
ln

m2
b

µ2 + 2L + ∆M

)
(A.5)

with L defined in (36) of [3]. ∆M depends on the mass
renormalization convention for the overall factor mb in
(3), such that ∆M = 0 in the MS scheme, ∆M =
3 ln(m2

b/µ2)−4(1−µf/mb) in the PS scheme (our choice)
and ∆M = 3 ln(m2

b/µ2) − 4 in the pole mass scheme.
Note that the expression for C

(f,t)
‖ differs from (35) of [3]

due to the different convention for the longitudinal “soft”
form factor (5). Furthermore, when T (t)

⊥ is defined with
T1 rather than ξ⊥, the corresponding C

(f,t)′
⊥ is given by

(A.4) with the term −L omitted. The factorizable correc-
tions from H

(u)
eff follow again from Ceff

7 → 0, which leads
to C

(f,u)
⊥ = C

(f,u)
‖ = 0.

The non-factorizable corrections C
(nf,t)
a are given in

(37) and (38) of [3], and make use of the result from [37].
The corresponding expressions for C

(nf,u)
a are obtained by

the replacements F
(7,9)
8 → 0 and F

(7,9)
1,2 → F

(7,9)
1,2 + F

(7,9)
1,2,u

with F
(7,9)
1,2,u given in [6].

A.2 Spectator scattering

The longitudinal amplitude receives a leading-order con-
tribution from a weak annihilation topology, where the
photon couples to the spectator quark in the B meson [3].

It is given by (eq denotes the charge of the spectator
quark)

T
(0,t)
‖,− (u, ω) = −eq

MBω

MBω − q2 − iε
4MB

mb
C34

q , (A.6)

where

C34
q ≡ C3 +

4
3
(C4 + 12C5 + 16C6)

+ 6 [1 + (−1)I ] δqd (C3 + 10C5), (A.7)

with I = 0, 1 for ω and ρ mesons, respectively. The corre-
sponding expression for T

(0,u)
‖,− is obtained by the replace-

ment C34
q → −C12

q with

C12
q ≡ 3 δqu C2 + (−1)I δqd

(
4
3

C1 + C2

)
. (A.8)

The terms proportional to δqd in the previous two equa-
tions do not appear in B → K∗�+�− transitions. (Analo-
gous terms with δqd → δqs would appear in Bs → φ�+�−.)
There is no leading-order contribution from spectator
scattering to T

(0,i)
‖,+ and the transverse amplitudes.

The first-order corrections are again divided into a
“factorizable” and a “non-factorizable” term, T

(1,i)
a,± =

T
(f,i)
a,± + T

(nf,i)
a,± . There is also a first-order correction to

the annihilation mechanism discussed above, which is not
yet known. T

(f,t)
⊥,± and T

(f,t)
‖,− are given in (20) and (22)

of [3], while now

T
(f,t)
‖,+ = Ceff

7
4MB

ūE
, (A.9)

because of the different convention pertaining to the longi-
tudinal “soft” form factor. The corresponding terms from
H

(u)
eff all vanish, T

(f,u)
a,± = 0. Furthermore, when T (t)

⊥ is de-

fined with T1 rather than ξ⊥, the corresponding T
(f,t)′
⊥,+ is

zero.
The non-factorizable amplitudes T

(nf,t)
a,± are given in

(23)–(26) of [3]. The new amplitudes read

T
(nf,u)
⊥,+ (u, ω)

= eu
MB

2mb

(
C2 − 1

6
C1

)
(t⊥(u, mc) − t⊥(u, 0)) ,

T
(nf,u)
‖,+ (u, ω)

= eu
MB

mb

(
C2 − 1

6
C1

) (
t‖(u, mc) − t‖(u, 0)

)
,

T
(nf,u)
‖,− (u, ω)

= eq
MBω

MBω − q2 − iε
6MB

mb

(
C2 − 1

6
C1

)
×

(
h(ūM2

B + uq2, mc) − h(ūM2
B + uq2, 0)

)
,(A.10)

T
(nf,u)
⊥,− (u, ω) = 0, where the functions t⊥,‖(u, m) are de-

fined in (27) and (28) of [3].
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A.3 Power-suppressed amplitudes

Some 1/mb-suppressed weak annihilation contributions
play an important role in decays to charged ρ mesons, be-
cause they are enhanced by the large Wilson coefficient C2.
In addition, power corrections may provide the dominant
source of isospin breaking, since, as can be seen from the
above formulae, the transverse amplitude is independent
of the charge of the spectator quark in the leading order of
the heavy quark expansion. On the contrary, all these ef-
fects are present in the longitudinal amplitude already at
leading power. We therefore neglect power corrections to
the longitudinal amplitude and summarize here the rele-
vant expressions for isospin-breaking power corrections to
the transverse amplitude.

Weak annihilation

Denoting the power-suppressed contributions to T (i)
⊥ de-

fined in (4) by ∆T (i)
⊥ , we find for the annihilation terms

at order α0
s (ŝ = q2/M2

B)

∆T (t)
⊥

∣∣∣
ann

= −eq
4π2

3
fBf⊥
mbMB

(
C3 +

4
3
(C4 + 3C5 + 4C6)

)

×
∫ 1

0
du

φ⊥(u)
ū + uŝ

+ eq
2π2

3
fBf‖

mbMB

mV

(1 − ŝ) λB,+(q2)
C34

q , (A.11)

∆T (u)
⊥

∣∣∣
ann

= −eq
2π2

3
fBf‖

mbMB

mV

(1 − ŝ)λB,+(q2)
C12

q ,

which generalizes the corresponding results in [32,36]. The
inverse moments of the B meson distribution amplitudes,
λB,±(q2), are defined in (49) and (50) of [3].

Hard spectator scattering

The power-suppressed hard scattering terms at order αs
read [32,36]

∆T (t)
⊥

∣∣∣
hsa

= eq
αsCF

4π
π2fB

NcmbMB

{
12Ceff

8
mb

MB
f⊥X⊥(q2/M2

B)

+ 8f⊥
∫ 1

0
du

φ⊥(u)
ū + uŝ

F
(t)
V (ūM2

B + uq2)

−
4mV f‖

(1 − ŝ) λB,+(q2)

×
∫ 1

0
du

∫ u

0
dv

φ‖(v)
v̄

F
(t)
V (ūM2

B + uq2)
}

.(A.12)

The quark-loop function F
(t)
V (s) is denoted FV (s) in [36],

where also the integral X⊥(ŝ) can be found. For q2 = 0

this integral suffers from a logarithmic endpoint singu-
larity as u → 1. We treat this singularity, which signals
a breakdown of factorization for the power corrections,
with the same ad hoc cutoff as in [36]. The corresponding
expression for ∆T (u)

⊥
∣∣∣
hsa

is obtained by the replacements

Ceff
8 → 0 and F

(t)
V (s) → F

(u)
V (s), where

F
(u)
V (s) =

3
4

(
C2 − 1

6
C1

) [
h(s, mc) − h(s, 0)

]
. (A.13)

The numerically largest power correction is ∆T (u)
⊥

∣∣∣
ann

,
because it comes with a large combination of Wilson co-
efficients C12

q ≈ 3 (when q = u, i.e. for B± decay). In
this weak annihilation effect the photon is emitted from
the spectator quark. Therefore the matrix element of Ou

2
factorizes at leading order in αs into

〈γ∗(q, µ)ρ−(p′, ε∗)|Ou
2 |B−(p)〉 (A.14)

= −ifρmρε
∗
ν 〈γ∗(q, µ)|ūγν(1 − γ5)b|B−(p)〉

assuming the decay is B− → ρ−�+�−, for which the effect
is most important. The B → γ∗ transition matrix element
is dominated by hard scattering in the heavy quark limit,
but power corrections (to weak annihilation, which is itself
a power correction to the process of interest) may be sig-
nificant, especially for q2 
 0 [29,30], where the hadronic
structure of the photon may be resolved. To keep the dis-
cussion general, we parameterize the matrix element by

〈γ∗(q, µ)|ūγν(1 − γ5)b|B−(p)〉

= igemeq
MB

2

{
ξ
(Bγ∗)
⊥ (q2) [i εµνρσn+ρn−σ + 2gµν

⊥ ]

−2 ξ
(Bγ∗)
‖ (q2) nµ

+nν
+

}
+ corrections, (A.15)

where the vectors n± are given by p′ = En− (E is the
energy of the ρ meson) and p = MB(n− + n+)/2. The
form factors defined by this parameterization describe the
transition of a B meson into a virtual photon of mass√

q2 at zero momentum transfer p′ 2 = (p − q)2 = 0. In
the heavy quark limit we find

ξ
(Bγ∗)
⊥ (q2) =

fB

2λB+(q2)
,

ξ
(Bγ∗)
‖ (q2) =

fB

2λB−(q2)
.

(A.16)

The “corrections” stand for additional Lorentz structures
that vanish in the heavy quark limit, and also when the
leading corrections from the hadronic structure of the pho-
ton are included. We may therefore adopt a more conser-
vative treatment of the leading weak annihilation effects
by expressing (A.6) (and, accordingly, T

(0,u)
‖,− ) in terms of

ξ
(Bγ∗)
‖ (q2) and (A.11) in terms of ξ

(Bγ∗)
⊥ (q2). The trans-

verse form factor at q2 = 0 has been estimated with QCD
sum rules [29,30], leading to a result not too different from
the heavy quark limit (A.16). In our numerical analysis we
use (A.16) to compute the central value of these form fac-
tors, but we assign a 50% theoretical error to this estimate.
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